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The time relaxation behavior of the solutions of certain classes of discrete master 
equations is studied in the limit of an infinite number of states. Depending on 
the range of the transition matrix, a relaxation behavior is found reaching from 
a t - 1 /2  law for short range, over enhanced relaxation to an exponential 
relaxation for the extreme long-range case. The behavior in the limit of a 
continuous family of states is also discussed. 

KEY WORDS: Time relaxation; master equations; diffusion; stochastic 
processes. 

1. INTRODUCTION 

It is a well-known fact that the solutions of the master equation with a 
finite number of states always show an exponential relaxation towards a 
stationary solution. Indeed, in the master equation 

N 

Cn = E Bnmcm' n = 1 . . . . .  N (1 )  
m = l  

where 

and 

Onto = A.m - 8nmEA,m (2) 
1 

A.m >/0, Vn, m (3) 

the matrix B always has an eigenvalue zero, and the number of indepen- 
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dent eigenvectors belonging to this eigenvalue is equal to its multiplicity. 
All other eigenvalues have strictly negative real parts, and since the total 
number of eigenvalues is finite the exponential relaxation of an arbitrary 
solution of (1) towards an equilibrium solution follows. For a discussion of 
these and some other quite general properties of the finite master equation, 
the reader is referred, e.g., to Refs. 1, 2. 

Suppose now that we have a sequence of master equations with N 
increasing to infinity. Then for large N the real parts of the eigenvalues 
may accumulate and become dense at zero, and in the limit N ~  m this 
may drastically change the relaxation behavior. The conditions under 
which this happens, and the resulting relaxation behavior, will be discussed 
in this paper for a certain class of master equations. Assuming cyclic 
boundary conditions, the matrices (A;~) will be supposed to be symmetric 
(microscopic reversibility) and translation invariant 

Aik = Aki = A ( i  - k ) ,  Vi ,  k (4) 

With these conditions, Eq. (1) can be interpreted as representing a 
continuous random walk problem on a one-dimensional lattice with 
periodic boundary conditions. The random walk on three-dimensional 
lattices is a frequently used model for the diffusion of atoms or defects in 
crystal lattices3 3~ A part of our results extends trivially to the three- 
dimensional case. 

If there are nearest neighbor transitions only, the general solution of 
(1), (4) for the infinite (one-dimensional) lattice is well known (n) and shows 
a relaxation towards the stationary solution (zero) following a t -1 /2  law. 
For the discrete time random walk on a lattice, the same kind of (disereti- 
sized) time relaxation has been shown to be true more generally if the 
second moments of the jump probabilities ~,kAi~(k  - i)2 are finite. (5~ In 
Section 2 of this paper, the corresponding result for the continuous ease is 
obtained. The condition Y , 7 = l A ( r ) r a <  ~ ,  r = l i - k  l, is here called the 
condition of short range of A (r). It is shown, if A (r) is of short range, that 
the solutions ci(t ) are approximated for large enough t by the function 
const �9 t -  1/2 up to any desired degree of accuracy. This is shown by writing 
down the solution of the finite system and then considering the limit 
N ~  ce. For comparison, the explicit solution for A (r) = exp( -a r ) ,  a > O, 
is briefly considered, and as a contrasting example the case where A (r) is 
independent of r. In this latter case, the exponential relaxation is found to 
persist in the limit N ~ m. 

In Section 3 we investigate the time relaxation for an interesting class 
of matrices A (r), which depend on r by a power law A ( r ) ~ r  -~, a > 1. 
Although for a > 3 these A ( r )  will be of short range, leading to a t -1 /2  
relaxation, for 1 < a < 3 the short-range condition is not fulfilled and the 
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relaxation behavior is changed for N ~ oo, now depending on a with the 
slowest term decaying as t-1/(~-1).  This is a faster relaxation than in the 
short-range cases. A qualitative change of behavior thus occurs at a = 3, 
where also logarithmic functions are involved. The results of this section are 
also valid more generally if A(r) has the form A(r) = const �9 r -~ + Al(r  ), 
where r~Al(r)-->O for r ~  ~ .  

In Section 4 a further limit procedure is considered, now passing from 
a denumerable number of states to a continuum of states. The limit 
processes of the short-range type are then all related by a Wiener measure 
to random walks on continuous paths (and the system of differential 
equations can be shown to approach a diffusion equation). The limit 
process of the long-range example of Section 3 is similarly related by 
another measure, studied by P. L~vy, (6) to a random motion along discon- 
tinuous paths (the paths always incorporating sudden jumps). This result 
fits well to the observation in Section 3 of a quicker time relaxation in the 
countable long-range case. An attempt is made at verbally characterizing 
the dynamical difference between the various cases considered, which 
manifests itself in the relaxation behavior ranging from a t-1/2 law over 
enhanced relaxation to an exponential type of relaxation. 

In this paper, for simplicity we consider only systems with one- 
dimensionally ordered states. There is, however, no difficulty encountered 
in generalizing most of the results to multidimensional arrays. The relax- 
ation behavior of the (translation invariant, symmetric) short-range cases is 
found to be like t-d/2, where d is the dimensionality of the lattice of states. 

. THE FINITE SYSTEM AND THE INFINITE LIMIT OF SOLUTIONS. 
TIME RELAXATION IN THE SHORT-RANGE CASE 

We start by writing down the general solution of the finite system (1) 
with the symmetry properties (4). Using the more convenient notation 

An,n+ r = An,n_r=:A(r), 0 <<. r < N / 2  
(5) 

An,n + N/2 = : 2 A  ( N / 2 )  i f  N e v e n  

and letting [x] be the largest integer less than or equal to x, we have 

N [N/21 

Cn = E BnkCk= Z .4 ( r ) (C._r  + Cn+ r -- 2C,,), c.+ u = e,, (6)  
k = l  r = l  

Equation (6) is immediately seen to have solutions of the type 

c f ( t )  = e-~ 'cos(2~rkn/N)  and c~-~(t) = e-~*'sin(2~rkn/N) (7) 
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(and their linear combinations), where 

[N/21 

oo k = - 2  ~,  A ( r ) ( c o s ( 2 ~ r k r / U )  - l ) ,  k = O, 1 . . . .  , I N ~ 2 ]  (8) 
r = l  

Here we shall in particular be interested in the fundamental solutions, i.e., 
the solutions with the initial conditions c,(0) = 8,,,, m fixed. These are 

1 2 [N/2I 
ohm(t) = ~ f'n q- ~ Z e-~ktCOS[2~r( n -- m ) k / U ] ,  

k = l  

m fixed, n = 1 . . . . .  N (9) 

where 

1, N odd 
(10) e , =  1 - ( - 1 ) " ,  N e v e n  

The general solution is a linear combination of (9), 

N 

cn(t ) =  ~ ?~mC, m(t), n =  1 , . . . , N  (11) 
m = l  

with the initial conditions c, (0) = )t~. 
Now let us examine what happens if N goes to infinity and let us 

denote by c, (N) the components of the solution (9) belonging to a given 
value of N. In order to obtain an integral in the limit, we introduce a new 
variable 

= k / N  (12) 

First we must study the behavior of r k, Eq. (8), when N ~ oo, k---> oo, and 
k / N - - >  K. Let us assume that A ( r )  does not depend on N. Then 

oo 

,ok - - >  = - 2  - 1) ( 1 3 )  
N--->oo r =  1 

k / N - - > ~  

= 4 ~ A (r)sin2~rxr (14) 
r = l  

the series converging uniformly if 

~] A ( r )  < ~ (15) 
r = l  

With (15), o~ is continuous in x and especially 

lim ~o~= ~o o = 0 (16) 
~:--).0 
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If further 

then also the series 

A ( r ) r <  oo (17) 
r = l  

OO 

4~r ~ A (r)r sin 2~rxr (18) 
r = l  

converges uniformly and can be integrated termwise. Hence (18) is the 
derivative of w~ and is continuous. Especially 

dw~ do~ 
lira W (~) = ~ (0) = 0 (19) 
K-->0 

If A (r) decreases faster still with increasing r, such that 

A (r)r < (20) 
r = l  

then in the same way we see that the second derivative of w~ exists and is 
continuous, and thus at ~ = 0 

lim d2~ d 2 ~  ~o 
~-~o dx - - - T  (~) = dx ---5- (0) = 8rr 2 ~ A ( r ) r  2 (21) 

r = l  

which is strictly positive [except in the trivial case where all A (r) are zero]. 
In this case we have 

o~ = ~f(K)  (22) 

where f(~) is continuous and 
OO 

f(x)---~4~r z ~ A ( r ) r2> 0 (23) 
fr r =  1 

(This is most easily seen by applying de l'H6pital's rule to w~/K2.) For 
> 0, f(~) is twice continuously differentiable. 

Having discussed w~ we may now turn to the equation (9), where we 
consider the same limit N--)oo, k ~  oo, k / N ~  ~r Let us be more definite 
about  k: 

k = [ ~N] + 1 (24) 

i.e., k is the smallest integer larger than xN. Equation (9) obviously has the 
same limit as 

[N/2] 

r ~i-/21i ~] e-'~ - m ) k / U ]  (25) 
L~,/ j k = ]  
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Under the assumption (15), however, the summands in (25) converge 
uniformly to a continuous function of g, and therefore, for N large enough, 
(25) is arbitrarily close to an approximating sum to the Riemann integral of 
this continuous function, which again in the limit N--> oo (by definition) 
converges to the integral. Thus for the solutions with the initial conditions 
C,(mU)(0) = 6,m, m fixed, we have 

lim C(Um)(t) = Gin(t) = 2 f l /Zd~e-~  - m)x  (26) 
N---> o~ JO 

where ~o~ is given by (13). Let us remark that this result could also have 
been obtained by means of the Euler-Maclaurin summation formula (v) 
applied to (9), where the remainder term can be estimated to be of relative 
order O ( 1 / N ) .  

Chin(t), Eq. (26), evidently goes to zero when t goes to infinity, but not 
necessarily in an exponential way as it does in the finite system. Most of the 
remainder of this paper will be concerned with the time dependence of 
Cnm(t ) under various assumptions on A (r). In this section we examine the 
general case where A (r) is of short range, i.e., such that (20) is valid, as well 
as an example of the extreme long range, where A (r) does not at all depend 
on  r (but is N dependent). In the following section we shall deal with an 
example of an intermediate range. 

Let A (r) be of short range. Then w~ is of the form (22) and, since (23) 
is different from zero, for small x f(x) can be absorbed in a variable 
substitution 

y = x ( f ( x ) ) l / 2  = (o~)1/2 (27) 

with 

dy 1 d,o  [ �89 ] 
- - - ( o )  > o  (28) 

dE 2(~)1/2 die ~-*0 die 2 

where d y / d x  is continuous and the limit follows by de l'H6pital's rule [on 
(dy/dK)Z]. Thus (27) can be inverted in a neighborhood of K = 0, and fory  o 
in this neighborhood 

coo, 0 = - 

+ 2 (  1/2 d~e-'~ - m)~ (29) 
a~(yo) 

For small enough Y0, the nonexponential part of the first integrand can be 
replaced by its value at y = 0, thereby introducing an error less than an 
e > 0, which can be chosen arbitrarily small. A subsequent shift of the 
upper limit of integration to infinity introduces an exponentially decaying 
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correction term. The second integral is also exponentially decaying. Noting 
that 

we therefore obtain 

where 

and 

with 

fo~  dye-y2t= 1 -1/2 -~ ~rt 

Cnm(t ) = a t - ' ~ 2 +  r(t)  

(30) 

(31) 

1 ~ r ~ A ( r ) r  2 -~/2 . . . .  (32) 
dK 2 (0 )  2 r = l  

Ir(t)[ < c~rl/2t-1/2 + at- l /2e-y~ ' + e -'~ (33) 

From (13) one obtains 

"/fl sin27rr 
~o~ - ( 3 7 )  

1 + fl sin2~rx 

~0' = min ~0, (34) 
X(yo) < • < 1/2 

In view of (14), ~0' is positive. 
For large t, Cnm(t) thus deviates from the function at-1/2 by a relative 

error less than r where r can be chosen arbitrarily small. 
The same can be shown for the N ~  oe limit of the general solution 

(11), if the initial conditions (C(mN)(0)) converge uniformly to (Cm(O)) with 
~mCm(O) < ~ .  Then 

c(~N)(t) ~ cn(t ) = 2 (1 /2dxe -~  (35) 
Jo 

where g,(x)  is the continuous sum of the uniformly in x convergent series 
m Cm (0)COS 2~rx (n -- m), n fixed, and by exactly the same way of reasoning 

as above, the asymptotic behavior of c,(t) is ~ t  -1/2, if A(r)  is of short 
range [i.e., if (24) is valid]. It was already mentioned that this generalizes to 
t -d/2 for A ( r  1 . . . . .  rd) describing symmetric, translation-invariant transi- 
tion probabilities in a d-dimensional array of states. 

As an explicit example of the short-range behavior, let us very briefly 
consider the master equation with an exponentially decreasing transition 
probability 

A (r) = e -"r, a > 0 (36) 
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where 

y = cotha,  fl = e-~/sinhZa (38) 

As expected, oa K has the form (22). Now 

y fl sin2cm 
< r < ~,fi sinZ~r~ (39) I+B 

and hence from (26) 

e-'l~t/zI._m(�89 C.m(t)<exp 2 I + f l  I._m 2 l + f l  

where I.(z) is the nth-order modified Bessel function [71. For large t, 
therefore, both sides behave as (v) const �9 t-1/2. Comparison with (31), (32) 
shows that the lower limit is the best possible, since 

e-~v/2I,(17flt)~(~rtflt)-l/2 for t large (41) 

Let us now discuss an example, which in some sense is an extreme 
opposite of the above case, namely, where A (r) does not at all depend on r. 
We shall have A (r) depend on N though, and therefore some remarks are 
in order: (i) The uniform convergence and continuity implications of (15), 
(17), and (20), which were used above, do not follow generally without 
conditions on the convergence in N of A(N)(r) to A(~)(r). �9 A sufficient 
supplementary condition to ensure the continuity of the kth derivative is 
N[A(N)(r) - A(~176 if N---> c~, uniformly for r = 1 . . . . .  N. (ii) If, 
however, to~ [Eq. (13)] is continuous at ~ = 0, it is easily deduced from Eq. 
(26) that the time relaxation is slower than any exponential term e-~,,t. This 
is not the case in the example that now follows. Let 

1 Vi, k (42) A ( N ) -  N '  

Then (15) is valid, but (8) fails to have a continuous limit. Indeed, Eqs. (8), 
(5) render ~0 k = 1 - 8k0, and therefore the infinite limit w~ has a discontinu- 
ity at ~ -- 0, 

1, x v a 0 (43) ~0~= 0, x = 0  

The limit of (9) can be calculated as before, and (26) becomes 

lira c(,N)(t) = e - t 2 ~ l / 2 d ~ c o s 2 ~ l ~ ( n  --  rn)  = e - t S n m  (44) 
N---> oo dO 

showing an exponential decay of the initial state also in the infinite limit. 
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Finally, let us remark that instead of solving the finite system of 
equations and considering the limit of the solutions as the number of states 
N goes to infinity, we could have started out from the infinite system of 
differential equations in the beginning [assuming (15)]. The question of 
uniqueness of the solutions is here a nontrivial one, (8'9) but if the initial 
conditions satisfy ~nCn(O) < ~ ,  there is a unique solution that is Fr6chet- 
differentiable as an element of l 1, as  Banach space of sequences { xn } ~=-o~ 
with the norm ~ [ x , [  < oe. (9) It can be shown that the solutions of the 
finite systems considered above, when N goes to infinity, converge in the 
l 1-norm precisely to this Fr6chet-differentiable solution of the infinite 
system. 

3. A LONG-RANGE EXAMPLE 

We now come to an interesting example, where the enhanced time 
relaxation in the case of a long-range transition matrix A is observed. In 
this model (which will be generalized at the end of the section), A;k depends 
on li - k I according to a power law 

Aik = A(r) = r -a, r = li - kl, ~ > 1 (45) 

where a is taken to be larger than one in order to ensure that (15) exists. 
For a > 3, A is of short range according to (20) and therefore the relaxation 
of c,(t), Eq. (26), is by a t -1/2 law. For smaller a, however, (20) no longer 
holds and the relaxation behavior is different. 

Inserting (45) in (13) we have 
o o  

a ~ =  -2r=~ff=l 1 (c~ (46) 

which can be naturally expressed by the function ~(z, a), 

2 r 

~(z,a)  = ~, 7-~, Izl < 1 (47) 
r = l  

which is a generalization of Riemann's zeta function 

~(a) = ~ r - a =  ~(1,a) 
r = l  

We have 

r = 2q~(1, cQ - q~(e 2~i~, a) - q~(e -2~i~, cQ (48) 

The analytic continuation of ~(z, a), Eq. (47), has been studied by E. 
Lindel6v, (1~ who found an expansion in terms of logz at the point z = 1, 
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~(1,a)  = ~(a), valid for [logz[ < 2rr: 

oo ( logz)  ~ 
e~(z,a) = r(1 - a ) ( - l o g z ) ~ - l +  ~ ~'(a - r) r! (49) 

r = O  

if a v a 1, 2, 3 . . . . .  and if a -- 2, 3 . . . . .  

,,ogz; (log ,  ,og,log ,  
, (z ,~)  = r=0E'~(~-- r) r----T--. + ~ - - ~  k=, (50) 

where the term r -- a - 1 is to be omitted in the first sum. 
In  (48) logz  = _+ i2rrK with 0 < ~ < 1/2,  and  thus (49), (50) can be 

used. Collecting terms, we have 

2 (2~rx)~- 1 

(2~ )  ~r 
+ 2 k ~(a  - 2 r ) ( -  1) ~-] 

r = l  (2r)! (51) 

for a ~ 1, 3, 5 . . . .  , and 

(-1)('~+')/2 [ ~1 1 _ log(g~rx) ](2rrx),~-, 
% = ( a -  1)[ k=l  ~ 

o c  
+ 2 E '  ~(a -- 2 r ) ( -  1) r - '  (2'n'~)2r 

r = l  (2r)! (52) 
2 r v ~ a  - 1 

if a = 3, 5 . . . . .  For  an even integer a, % is a polynomial ,  since ~ ( - 2 n )  
= 0, n = 1, 2 . . . . .  For  all other values of a, w~ is nonanalyt ical  at x = 0. If  

> 3, which is the short-range case, the lowest-order term in (51) and (52) 
is proport ional  to x 2 and thus % is of the form (22) as it should be. For  

< 3, however, the lowest-order term is proport ional  to ~ - ] ,  which now 
determines the time relaxation behavior  of c,(t).  For  a = 3 a logari thm 
appears in the lowest-order term, const  �9 ~r to. 

Consider the case a < 3. % is of the form 

r = axe-'+ K2F(Jr (53) 

where F(~) is a power series in x2, and F(0) v ~ 0. Therefore 

~-(~-')o0%_ >0a= (2rr)~-'[ -2r(1 - ~)cos �89 - 1)] (54) 

and 

_(~_~) a,~ (")---~('~ _ 1)~ (55)  dx ~o 
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Now let 

Then 

y = (%) ' / (~- ' )  (56) 

d y  _ ( r  x_  1) d% 
d-x - dr K~  (a - 1)a ' / ( " -  ') ~ 0 (57) 

and we can proceed exactly as in Section 2 for the short-range case, to find 

c.(t) = a_______(a2 -I/(~-l) f~176 r(t) (58) 
- -  JO 

with 

Ir(t)l < 2-~_ l a - ' / (~ -"  f ~  dye-Y ~ ~t+ 2es176 lt+ 2~l/2 dKe-~d 
"yo a~(Yo) 

(59) 

where Yo is chosen such that 

dK _ (e~ - 1)-'a-~/(~-') I < e (60) Icos[ 2~rx(y) ] ~yy 

for all y < Yo, given an arbitrary c > 0. Further 

s176 -'/(~ " F ( ~ _  1 ) (61) 

and we obtain 

with 

and 

where 

c.(t) = bt -1/(~-1) + r(t) 

' -o  os �89 -'''~ 

a t - l / ( a - t )  I~(,)1 < 2,r( ~ ) + e-yU'td(t) 

(62) 

(63) 

(64) 

d(t)  = 1 + b2(2-a)/(~-l)[t-1/(~-D+ y~-~F(  ~ - 1  )-tt-1]~ (65) 

In contrast to the short-range case, while we still have a power law, the 
time relaxation exponent now depends on a. The sudden change in the a 
dependence occurs at the value a = 3, which shows an intermediary behav- 
ior deriving from the presence of a logarithm in the lowest-order term of 
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(52). Indeed, if a = 3, we can show that for any fl > 0 and any positive 
constants c I and c 2, there exists a t o such that for t > t o 

c~ t-I/(2-B) < G(t) < c2 t-l~2 (66) 

The above results are also valid in the more general case where A (r) is 
of the form 

A (r) = const- r -~ + A l(r) (67) 

with 

raAl(r) >0 (68) 
r---~0 

since the addition of A l(r) will not affect the lowest-order term in ~%. And 
as in the short-range case, the results also extend to solutions G(t) with 
arbitrary initial conditions G(0) satisfying ~, .G(0)  < m. 

4. THE CONTINUUM LIMIT. PATH INTEGRALS AND ORDERING 

In the preceding sections we studied the time relaxation obtained in 
the limit of large systems governed by a discrete master equation. We 
observed a fundamental difference in the relaxation behavior according to 
whether the second moment of A(r) existed or not. If it existed, the 
relaxation behavior was universally like t -  ~/2, otherwise it was quicker and 
depended on the form of A (r) more sensitively. 

The fundamental difference between the short-range and long-range 
cases is again very clearly seen if the continuum limit is taken. Interpret n 
as numbering the points of a one-dimensional lattice with a lattice constant 
h (e.g., think of the problem of particle diffusion in a crystal). Write x = hn 
and let h go to zero, keeping x fixed. This continuum limit corresponds to 
changing the scale on which observation is made completely towards the 
macroscopic regime. A change in the time scale is also necessary in order 
that the relaxation can be observed at finite times. 

Let A (r) be of short range and consider the general solution of (49), 
with (26), 

cn(t ) = m=_oe2j0~ (1/2dKe-'~ - m)K]Cm(O ) (69) 

Let the initial values be given as 

Cm(O ) = v(hm), where f~_~ dyv (y )  < ~z (70) 
o o  

Denote x = hn, y = hm, r = t / h  2, and k -- K/h, and let h-->0, keeping x 



Time Relaxation of the Solutions of Master Equations 351 

and ~- fixed. Then 

u(x,'r) = 2 f:oo dy fo ~ dke-ak2~'cos[ 2 ~ ' k ( x -  .V)]v(y) c.(t) - - >  
h-~O 

hn---> x 

t / h 2-->.r 

= ( at ! J_oo dye-~2(x-y)2/azv(y) (71) 

where a = 4~r2~]~= 1A (r)r  2. This is a solution of the one-dimensional diffu- 
sion equation 

~.u(x ,~)  = ~O~xxU(X,~) 
u(x,'c = O) = v(x)  (72) 

with the diffusion constant K 0 = ~r~xA(r)r  2. Equation (72) can also be 
obtained directly as the continuum limit of the master equation itself, if and 
only if ~ =  1A (r)r  2 < oo. The solution Eq. (71) behaves as t -  1/2 for large t, 
and since the continuum limit involved only a scale transformation of the 
time, it again follows that the short-range processes all must have the same 
relaxation behavior. This is not so for the long-range processes of Section 4. 
With the same notation as above, but with the time scaling ~- = t / h  a- 1, we 
obtain 

Yoo lv( ) 
hn--)" x 

t/h" ~-~'~ 

(73) 

where b = -2F(1  - a)cos �89 - 1), and this is not a solution of a diffu- 
sion equation. It satisfies the differential-integral equation 

;% , O,u(x,r) = P dy ~-~  [ u(x  + y) - u(x) ]  (P  = principal value) 

(74) 

which can be obtained by applying the same limit procedure to the master 
equation itself, provided 1 < a < 3. The form of the integration kernel is 
that of A (r) itself, so here the details of A (r) are clearly more important 
than in the short-range cases, where only the second moment of A (r) 
remained in the equations after the continuum limit was taken. In particu- 
lar, the relaxation behavior here depends explicitly on ~. 

We finish with some rather speculative remarks on dynamical order- 
ing. Let Cn be the probability of occupation of a state (or site) n. The states 
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are of course ordered by their numbers, but this numbering is in principle 
arbitrary. However, a certain dynamical order of states (or "topology" of 
states) is established if A (r) becomes smaller as r increases. If A(r)  is 
monotonous this ordering is strict. Let us illustrate this point by considering 
two extreme cases. If there are nearest neighbor transitions only, a state j 
can be reached from a state i only by going through all intermediate states 
and thus there is dynamically a strict order present, which coincides with 
the number order. If on the other hand A (r) is independent of r, then from 
a dynamical viewpoint all states are equally close to the initial state and 
thus there is no dynamical ordering. In Section 2 we saw that in the former 
case the relaxation to the equilibrium solution obeyed a t-1/2 law, whereas 
in the latter case we found an exponential relaxation. We also saw that the 
t-1/2 law was valid for all A (r) that diminished fast enough with r to satisfy 
the condition (24), which we called the condition of short range. It is now 
tempting to speculate that the short-range cases all describe processes, 
which in some sense are essentially local relative to the dynamical ordering 
of the states, and that for the long-range cases the different relaxation is 
perhaps a measure of the deviation from this locality. For the continuum 
limit this can be made more concrete. Consider u(x, t), Eqs. (71), (73), and 
define by a function x( t )  a path through the states x. Then the kernel of 
(71) has an interpretation as (the density of) the Wiener measure (11' 12) of 
the continuous paths connecting x and y such that x(O) E (y, y + dy) and 
x( t )  = x. The kernel (73) of the long-range case, on the other hand, turns 
out to be a measure not on the continuous paths only, but rather on the 
collection of left (or right) continuous paths with discontinuities of the first 
kind (finite jumps), whereby the continuous paths have zero measure. (12'6) 
In the continuum limit, we are thus led to the interpretation that the 
short-range cases describe processes where the change is local in the sense 
of continuous paths (or evolution of a sample), whereas in the long-range 
cases, while the (dynamical) ordering may still be there, it is partly 
overruled by the change being not entirely local but always also including 
jumps over some distance. The continuous path cases have a t -1/2 type of 
relaxation, whereas for the discontinuous path cases we obtain a quicker 
relaxation, ~ t  -1 / (~-~ ,  1 < oL < 3. Finally, the continuum limit of the 
extreme long-range case of section 2, Eq. (44), which has no (finite) path 
ordering, still has an exponential relaxation. 
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